Adaptation and Validation of a Brief Artificial Intelligence Job Performance Scale (BAIJPS) in Nurses
DOI:
https://doi.org/10.69653/iah20232Keywords:
nurses, performance, artificial intelligence, validationAbstract
Background: The integration of artificial intelligence (AI) in healthcare is revolutionizing work practices and improving medical care through technologies such as decision support systems and surgical robots. However, it faces challenges such as cost, accessibility, and the need for specialized training. Objective: This study aimed to adapt the Brief Job Performance Scale (BJPS) and evaluate the psychometric properties of the Brief Artificial Intelligence Job Performance Scale (BAIJPS) in Peruvian nurses, considering the specific demands and integration of AI in their work practices. Methods: An instrumental design with convenience sampling was employed, including 199 nurses (M=35.27, SD=8.5). Analyses included descriptive statistics, Confirmatory Factor Analysis (CFA), and measurement invariance. Results: The unidimensional factorial structure of the scale showed a good fit (CFI = 0.97, TLI = 0.95, RMSEA = 0.08, SRMR = 0.03), with high factor loadings and internal consistency (α = 0.96, ω = 0.96). Measurement invariance by gender confirmed that the BAIJPS is applicable equally among men and women. Conclusions: The BAIJPS is a valid and reliable tool for assessing job performance in nurses in the context of AI integration, reflecting both task and contextual performance. This supports the implementation of policies to improve training and adaptation of nurses to the use of AI technologies, ensuring accurate and culturally relevant measurements.
References
Ato, M., López, J. J., & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicologia, 29(3), 1038–1059. https://doi.org/10.6018/analesps.29.3.178511
Bermejo-Peláez, D., Marcos-Mencía, D., Álamo, E., Pérez-Panizo, N., Mousa, A., Dacal, E., Lin, L., Vladimirov, A., Cuadrado, D., Mateos-Nozal, J., Galán, J. C., Romero-Hernandez, B., Cantón, R., Luengo-Oroz, M., & Rodriguez-Dominguez, M. (2022). A Smartphone-Based Platform Assisted by Artificial Intelligence for Reading and Reporting Rapid Diagnostic Tests: Evaluation Study in SARS-CoV-2 Lateral Flow Immunoassays. JMIR Public Health and Surveillance, 8(12). https://doi.org/10.2196/38533
Borman, W. C., & Motowidlo, S. J. (1997). Task performance and contextual performance: The meaning for personnel selection research. Human Performance, 10(2). https://doi.org/10.1207/s15327043hup1002_3
Campbell, J. P. (1990). Modeling the performance prediction problem in industrial and organizational psychology. In Handbook of Industrial and Organizational Psychology.
Catalina, Q. M., Fuster-Casanovas, A., Vidal-Alaball, J., Escalé-Besa, A., Marin-Gomez, F. X., Femenia, J., & Solé-Casals, J. (2023). Knowledge and perception of primary care healthcare professionals on the use of artificial intelligence as a healthcare tool. Digital Health, 9. https://doi.org/10.1177/20552076231180511
Chalco-Ccapa, I., Torres-Mamani, G., Morales-García, M., Flores-Saenz, A. A., Sairitupa-Sanchez, L. Z., Paredes-Saavedra, M., & Morales-García, W. C. (2024). Validation and invariance of an Individual Work Performance Questionnaire (IWPQ-P) in Peruvian Nurses. Data and Metadata, 3, 259. https://doi.org/10.56294/dm2024259
Chen, F. F. (2007). Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504. https://doi.org/10.1080/10705510701301834
Clancy, T. R. (2020). Artificial Intelligence and Nursing: The Future Is Now. Journal of Nursing Administration, 50(3). https://doi.org/10.1097/NNA.0000000000000855
Curioso, W. H., & Brunette, M. J. (2020). Inteligencia artificial e innovación para optimizar el proceso de diagnóstico de la tuberculosis. Revista Peruana de Medicina Experimental y Salud Pública, 37(3). https://doi.org/10.17843/rpmesp.2020.373.5585
Gabini, S., & Salessi, S. (2016). Validación de la escala de rendimiento laboral individual en trabajadores argentinos. Revista Evaluar, 16(1), 31–44. https://doi.org/10.35670/1667-4545.V16.N1.15714
George, D., & Paul Mallery, with. (2003). SPSS for Windows Step by Step A Simple Guide and Reference Fourth Edition (11.0 update) Answers to Selected Exercises. A Simple Guide and Reference, 63.
Hee Lee, D., & Yoon, S. N. (2021). Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. International Journal of Environmental Research and Public Health, 18(1). https://doi.org/10.3390/ijerph18010271
Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2022). semTools: Useful tools for structural equation modeling. In The Comprehensive R Archive Network (R package version 0.5-6). https://cran.r-project.org/package=semTools
Kline, R. B. (2016). Principles and practice of structural equation modeling (Cuarta Ed.). Guilford Press.
Koopmans, L., Bernaards, C., Hildebrandt, V., Van Buuren, S., Van Der Beek, A. J., & de Vet, H. C. w. (2012). Development of an individual work performance questionnaire. International Journal of Productivity and Performance Management, 62(1), 6–28. https://doi.org/10.1108/17410401311285273
Koopmans, L., Bernaards, C. M., Hildebrandt, V. H., De Vet, H. C. W., & Van Der Beek, A. J. (2014). Construct validity of the individual work performance questionnaire. Journal of Occupational and Environmental Medicine, 56(3). https://doi.org/10.1097/JOM.0000000000000113
McDonald, R. P. (1999). Test Theory: A United Treatment. Lawrence Erlbaum.
Mita, V., Castillo, L., Castillo-Sequera, J. L., & Wong, L. (2023). A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics. International Journal of Online and Biomedical Engineering, 19(14). https://doi.org/10.3991/ijoe.v19i14.41949
Morales-García, W. (2024). Adaptación y validación de una escala de Escala de Autoevaluación del Desempeño en el Trabajo en el personal de enfermería. In Press.
Muñiz, J., Elosua, P., & Hambleton, R. K. (2013). Directrices para la traducción y adaptación de los tests: Segunda edición. In Psicothema (Vol. 25, Issue 2). https://doi.org/10.7334/psicothema2013.24
Muthen, L., & Muthen, B. (2017). Mplus Statistical Analysis with latent variables. User’s guide (8th ed.). Muthén & Muthén.
Pichihua, S. (2023). Así se usa la inteligencia artificial en el Instituto Nacional de Salud del Niño San Borja. El Peruano.
Prentice, C., Dominique Lopes, S., & Wang, X. (2020). Emotional intelligence or artificial intelligence– an employee perspective. Journal of Hospitality Marketing and Management, 29(4). https://doi.org/10.1080/19368623.2019.1647124
Rea, T., Guillari, A., Sergi, C., & Serra, N. (2020). Mathematical models in nursing research. Journal of Public Health Research, 9(4). https://doi.org/10.4081/jphr.2020.1952
Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48, 1–36. https://doi.org/10.18637/JSS.V048.I02
Saban, M., & Dubovi, I. (2024). A comparative vignette study: Evaluating the potential role of a generative AI model in enhancing clinical decision-making in nursing. Journal of Advanced Nursing. https://doi.org/10.1111/jan.16101
Saleh Ibrahim, Y., Khalid Al-Azzawi, W., Hamad Mohamad, A. A., Nouri Hassan, A., & Meraf, Z. (2022). Perception of the Impact of Artificial Intelligence in the Decision-Making Processes of Public Healthcare Professionals. Journal of Environmental and Public Health, 2022. https://doi.org/10.1155/2022/8028275
Schumacker, R. E., & Lomax, R. G. (2016). A Beginner´s Guide to Structural Equation Modeling (4th ed.). Taylor & Francis.
Soper, D. (2024). A-priori Sample Size Calculator for Structural Equation Models [Software]. Software.
Tursunbayeva, A., & Renkema, M. (2023). Artificial intelligence in health-care: implications for the job design of healthcare professionals. Asia Pacific Journal of Human Resources, 61(4). https://doi.org/10.1111/1744-7941.12325
Videnza Consultores. (2024). Inteligencia artificial para la salud en el Perú. Gestión.
von Gerich, H., Moen, H., Block, L. J., Chu, C. H., DeForest, H., Hobensack, M., Michalowski, M., Mitchell, J., Nibber, R., Olalia, M. A., Pruinelli, L., Ronquillo, C. E., Topaz, M., & Peltonen, L. M. (2022). Artificial Intelligence -based technologies in nursing: A scoping literature review of the evidence. In International Journal of Nursing Studies (Vol. 127). https://doi.org/10.1016/j.ijnurstu.2021.104153